

Updating CAD Model through 3D Scanned Point Cloud for Automated Dismantling

Ikjune Kim Principal Researcher, Ph. D. Korea Atomic Energy Research Institute 2023. 9. 5.

Project Introduction

- Development of the remote and automated cutting tech.
 - Laser cutting with a robot manipulator in an underwater env.
 - Our laser cutter's stand off distance is 10 mm
 - To cut structures with complex geometry
 - → Workpiece localization is required

• Fast and automatic digital mockup and scenario update

Digital mockup of GORI 1

- Model of the target facility
 - GORI 1 NPP of KHNP, Korea
 - 3D CAD Modeling based on 2D Drawings (Dassault CATIA V5)
 - Including Kinematics and Mechanical properties
 - Used for Dismantling Simulation **Containment Vessel** Crain **Steam Generator** Reactor RCP

Target Products

• Target model: Upper support plate of Reactor Internal

→ High radio activity
→ Complex Geometry

Upper Support Plate

Testbed Preparation

- Planning in the Digital mockup
- CAD model update and path update
- Execute in the Testbed

Digital mockup

Testbed

CAD Model Update

Overall procedure

3D Laser Scanning

- Laser scanner
 - Phoxi 3D Cam L
 - We build Underwater, anti-radiation case

- Underwater calibration
 - Using Optics and AI

Blue: raw PCD, Red: calibrated PCD

Result Point Cloud

Point Sampling

• Convert CAD model to Mesh model

• Ray cast to the mesh

- Delete hidden facets for speed up
- Calc. Intersection point between facet and ray.
 - 250 X 250 Ray cast → generates 42,313 points (6.14 sec.)

PCD Registration

- Iterative Closest Point (ICP)
 - If we know the corresponding points, it's possible to calculate the transformation

ICP Algorithm

- 1 Random points selection (e.g., 1000) (p_i)
- 2 Select closet points from p_i in the other point cloud (q_i) \rightarrow Sensitive to initial position
- ③ Delete Long-distance pair
 → Two PCDs have to be close enough
- ④ Calculate transformation by SVD (Rotation (R), Translation(t))
- (5) Error function $E \coloneqq \sum_i (R \boldsymbol{p}_i + t \boldsymbol{q}_i)^2$ minimize the E

Initial Registration

- Calculate Geometrical feature as histogram
- Matches two histograms to align
 - Use as ICP initial position
- Fast Point Feature Histogram (FPFH)*
 - Key point sampling (Uniform sample)
 - Calc feature histogram on each key point
 - Baesd on the geometry info (normal vector) Each key point and its neighbor keypoints

Update Model and Path

- Cutting Path Update
 - Register Sampled PCD (Ray casting) to Scanned PCD

Apply transformation, calculated by the registration

Test Environment and Result

Implementation Environment

- Language: C++
- Point Cloud Handling: PCL 1.8.1
- Mesh and Point Sampling: VCGLib
- CAD system: Dassault CATIA V5
- Target model setup
 - Same shape with the digital mockup
 - Rotational error < 10 degree</p>
 - Translational error <50 mm</p>
- Registration method
 - Initial align by FPFH
 - Fine registration by ICP
- 104 cutting test succeeded

Demo

Conclusion

- Project result
 - Development digital mockup update methodology
 - Ray cast point sampling
 - PCD alignment using FPFH and ICP
 - Update CAD model position and Cutting Path
 - Fast automatic update of position of the digital mockup
- Future works
 - Plan to study on the different shape, not exist or redundant cases
 - Shape update, shape generation

Thank you.

Ikjune Kim ikjunekim@kaeri.re.kr